HOSSAM GHANEM (26) 3.9 Related rates (A)

	(20) 3.9 Λ	eiaiea raies ((**)
Circle	Sphere	Right cylinder	Right Cone
$C=2\pi r$	$S = 4\pi r^2$	$S=2\pi rh$	$S = 2\pi r \sqrt{r^2 + h^2}$
		h	
$A=\pi r^2$	$V = \frac{4}{3}\pi r^3$	$V=\pi r^2 h$	$V = \frac{1}{3}\pi r^2$
Equal side triangle	Isosceles triangle	Right triangle	Triangle
C = 3a	C = 2a + s	C = a + b + c	C = a + b + c
$\frac{\pi}{3}$		c a	a h c h
$A = \frac{\sqrt{3}}{2}a^2$	$A = \frac{1}{2}a^2 \sin \theta$ $A = \frac{1}{2}sh$	$A = \frac{1}{2}ab$	$A = \frac{1}{2}bh$ $A = \frac{1}{2}ab\sin\theta$
Rectangle	Square	Coupe	Rectangular box
C = 2(a+b)	C = 4a	$S = 6a^2$	S = 2ab + 2ac + 2bc
a b	a III	a a	c b
A = ab	$A = a^2$	$V = a^3$	V = abc

Example 1 35 December 16,

2004

Tow students start walking from the same point. One walks south at a rate $4 \, m/sec$, and the other walks west at a rate $3 \, m/sec$. At what rate is distance between the two students increasing 2 seconds later

Solution

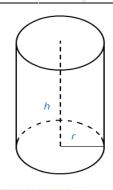
2 seconds

$$x = -6$$
, $y = -8$, $s = 10$
 $s^2 = x^2 + y^2$
2 $s \frac{ds}{dt} = 2 x \frac{dx}{dt} + 2y \frac{dy}{dt}$
20 $\frac{ds}{dt} = 2(-6)(-3) + 2(-8)(-4)$
20 $\frac{ds}{dt} = 36 + 64$
 $\frac{ds}{dt} = \frac{100}{20} = 5 m / sec$

Example 2 37 May 4, 2006

The radius of a closed right circular cylinder is decreasing at rate of $1 \, cm/sec$ and the height is increasing at a rate of $4 \, cm/sec$. Find the rate at which the total surface area of the cylinder is changing when the radius is $6 \, cm$ and the height is $10 \, cm$

Solution


$$\frac{dr}{dt} = -1 , \frac{dh}{dt} = 4 , r = 6 , h = 10$$

$$s = 2\pi r h + 2\pi r^{2}$$

$$\frac{ds}{dt} = 2\pi h \frac{dr}{dt} + 2\pi r \frac{dh}{dt} + 4\pi r \frac{dr}{dt}$$

$$= 2\pi (10)(-1) + 2\pi (6)(4) + 4\pi (6)(-1)$$

$$= \pi (-20 + 48 - 24) = 4\pi$$

Example 3 33 May 6, 2004

A snow ball is melting at a rate of $0.03 \text{ ft}^3/\text{hr}$. At what rate is the surface area changing when the volume of the ball is 36π ?

Solution

$$\frac{dv}{dt} = -0.03$$

$$v = \frac{4}{3}\pi r^{3}$$

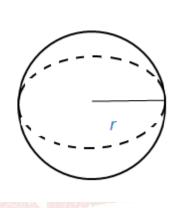
$$36\pi = \frac{4}{3}\pi r^{3}$$

$$r^{3} = \frac{(36) \cdot (3)}{4} = (9)(3) = 27$$

$$r = 3$$

$$\frac{dv}{dt} = 4\pi r^{2} \frac{dr}{dt}$$

$$-0.03 = 4\pi (9) \frac{dr}{dt}$$


$$\frac{dr}{dt} = \frac{-3}{(4)(9)(100)\pi} = \frac{-1}{1200\pi}$$

$$s = 4\pi r^{2}$$

$$\frac{ds}{dt} = 8\pi r \frac{dr}{dt}$$

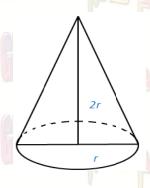
$$= 8\pi (3) \cdot \frac{-1}{1200\pi} = \frac{-1}{50}$$

Example 4 40 May 3, 2007

A metal in the shape of a right circular cone, whose height is twice its radius, is being heated. If the radius is increasing at a rate of $0.001 \, cm/sec$, find the rate at which its volume is increasing when its radius is $2 \, cm$

Solution

$$\frac{dr}{dt} = 0.001 , h = 2r$$


$$v = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi r^2 (2r)$$

$$v = \frac{2}{3}\pi r^3$$

$$\frac{dv}{dt} = 2\pi r^2 \frac{dr}{dt}$$

$$= 2\pi (4)(0.001) = 0.008\pi$$

Example 5 38 July 17,

2006

A plate in a shape of a disk is heated. If the area A of the plate (in cm^2) after time t (in hours) is given by $A = \sqrt{t^2 + 3t + 6}$ Find the rate at which the radius of the plate is changing after two hours

Solution

$$A = \sqrt{t^{2} + 3t + 6}$$

$$\pi r^{2} = \sqrt{t^{2} + 3t + 6}$$

$$t = 2$$

$$\pi r^{2} = \sqrt{4 + 6 + 6}$$

$$r^{2} = \frac{\sqrt{16}}{\pi} = \frac{4}{\pi}$$

$$r = \frac{2}{\sqrt{\pi}}$$

$$2\pi r \frac{dr}{dt} = \frac{2t + 3}{2\sqrt{t^{2} + 3t + 6}}$$

$$2\pi \left(\frac{2}{\sqrt{\pi}}\right) \frac{dr}{dt} = \frac{4 + 3}{2(4)}$$

$$4\sqrt{\pi} \frac{dr}{dt} = \frac{7}{4}$$

$$\frac{dr}{dt} = \frac{7}{16\sqrt{\pi}}$$

$\frac{dr}{dt} = \frac{7}{16\sqrt{\pi}}$

Example 6

49 July 24,

2010

(3 Points) A point P(x, y) moves on the curve $y = \sqrt{x}$. If S is the distance between the point P and the origin then find

when x = 1 and $\frac{dx}{dt} = 2$.

Solution

$$s = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$s = \sqrt{(x - 0)^2 + (y - 0)^2}$$

$$s = \sqrt{x^2 + y^2}$$

$$s = \sqrt{x^2 + x}$$

$$\frac{ds}{dt} = \frac{2x + 1}{2\sqrt{x^2 + x}} \cdot \frac{dx}{dt}$$

$$\frac{ds}{dt} = \frac{2 + 1}{2\sqrt{1 + 1}} \cdot (2) = \frac{3}{\sqrt{2}}$$

<u>Homework</u>

<u>1</u>	42 May 5, 2008 Tow points A and B located at the origin (0, 0) of the xy -plane. Point A moves along the x -axis at $3 m/min$, and point B moves along y -axis at $4 m/min$. What is the rate of change of the distance between A and B after two minutes
2	45 10 May, 2009 A car starts at a point A and travels east at 80 km/hr. At the same time another car starts at A and goes north at 60 km/hr. At what rate is the distance between them changing one hour after the cars start?
3 2	A ladder 13 ft long is leaning against the side of a building. If the bottom of the ladder is pulled away from the building at a rate of $\frac{1}{10}$ ft /sec how fast is the angle formed by the ladder and the ground changing at the instant when the top of the ladder is 12 ft above the ground?
4	39 Dec. 14, 2006 A right circular cylinder is being heated, its radius is increasing at rate of 0.04 mm/sec and its height is increasing at a rate of 0.15 mm/sec. Find the rate at which the volume of the cylinder is changing when the radius is 0.5 mm and the height is 0.3 mm
<u>5</u>	The radius r of a cylinder decreasing at a rate of 4 m/sec , and the altitude h increasing at a rate of 4 m/sec Does the volume increasing or decrease when $r = 5 \text{ m}$ and $h = 4 \text{ m}$
<u>6</u>	24 July 20th, 2000 As a right circular cylindrical metal rod is being heated, its height is increasing at a rate of 0.002 cm/ min and its radius is increasing at a rate of 0.001 cm/min. At what rate is the volume changing when the rod has height 20 cm and radius 4 cm.
<u>1</u>	25 December 10, 2000 A right circular cylinder with closed top and bottom is being heated. Its height is increasing at a rate of 0.004 cm / min and its radius is increasing at rate of 0.002 cm/min. At what rate is the total surface area changing when the cylinder has height 20 cm and radius 4 cm?
<u>8</u>	4 December 15, 1994 Gas is escaping from a spherical balloon at the rate of 2 ft ³ /min. At what rate is the surface area decreasing when the radius is 1 ft.
9	48 Sunday 9 May 2010 A meeting ends at 6.00 p.m. Amal leaves immediately, and drives North at a speed of 80 km / hour. Batool leaves a $\frac{1}{2}$ hour later and drives East at a speed of 120 km / hour How fast is the distance between them increasing at 7.00 p.m. ?

65168855

HOSSAM GHANEM